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1. Introduction 

In the modern theory of least squares, and 
the theories from which it evolved [12], the 

notion of residuals or the somewhat kindred 
notion of errors estimation, both of which have 
a strong empirical basis, play a basic role 
[2, 3]. Either one of these notions, in their 
relevent context, with the twin principles of 
unbiasedness and minimum variance, yield the 
solutions to the problems of fitting curves or 
surfaces, or adjustment of observations. 

In this connection, in the theory of re- 
gression for sample surveys presented by Konijn 
[6], the notion of residuals also plays a basic 
role, plus either of the following assumptions: 

(i) "the population...itself con- 
stitutes a proportionate stratified 
sample from a (conceptually) infinite- 
ly large population of individuals 
with similar behavior. This makes 
the residual z" (equal to y - a - 
in his notation) "an ordinary random 
variable, in the sense of a drawing 
from an infinite population, uncorre- 
lated with each x and with zero mean," 
and (ii) "for any given individual in 
the finite population the condition- 
al mean of y given x is linear in x, 
and . . . the deviation z correspond- 
ing to a given individual and for a 
fixed value of x represents one 
realization among a class of potential 
fluctuations about this individual's 
conditional mean y for any fixed x'', 

each leading to two fifferent linear models 
proposed by him. 

Recently Godambe and Thompson [5] intro- 
duced with much ingenuity the notion of "error" 
vector for their "attempt to show how the 
regression analysis generally used for hypo- 
thetical populations can also be validated for 
the actual populations commonly dealt with in 
statistical surveys" by starting their arguments 
with the assumption which they stated as 
follows: 

"Suppose that for every unit i(í =1,.., 
N) of the population we have knowledge 
a priori (i.e. before any sampling is 
done) of the (real) value yi associated 

with the unit i(i =1,..,N) of some 
auxiliary variate y ". 

Their arguments for arriving at the "error" 
vector are different from those of Konijn of 
whose work they do not appear to be aware. 

However, in the theory presented in section 

2, these restrictive concepts of residuals or 
errors (restrictive, because other than the 

dependent random variable other random variables 
pertaining to the units of the sample would 
have to be known or to remain fixed) do not play 
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any role. Rather, the notion of the ascribed 
(or hypothesized) line, surface, or hypersurface, 
with variables that are not random variables, 
passing through the centroid,* the statistics of 
which have desirable properties in the context 
of sample survey theory, plays an important role. 
The latter notion immediately leads to the 
random function, which plays a key role as 
illustrated in the example of section 3. 
Further the present theory has a different 
empirical basis from that of least squares. In 
sequel it will appear that the logical basis of 
this theory, characterized by an economy of 
principles and assumptions, is different from 
those of Konijn, Godambe, and Thompson. 

In regard to principles, what is common 
between the theory presented in section 2 and 
least squares is the Gauss- Laplace principle 
of minimum variance. Because of this circum- 
stance, in the matter of fitting a straight line 
(or any plane), for the case of a single stratum 
or universe, despite the difference in approach, 
the end results agree, when the line is made to 
pass through the estimated centroid. This agree- 
ment is evidenced by equation (27). 

Thus so far in the literature of statistical 
theory and methods, a theory of functional 
relationship which directly recognizes the 
circumstance that all values observed on the 
units of a probability sample from a finite 
universe are random variables does not exist. 
The theory presented in section 2, which is 
fairly general, is an attempt to fill this gap, 
and is an elaboration of the two concise state- 
ments [9, 10] made by the writer more than 
eight years ago. 

One illustration of the theory given in 
section 3 has obvious applications, for example 
in studying relations between income and expend- 
iture in consumer expenditure surveys carried 
out by methods of statistical sampling, and 
doubtless other sociological surveys similarly 
carried out. 

2. Theory 

There is a finite universe U composed of N 
identifiable elements {ui: i =1,2,...,N} which 

are the ultimate units of sampling. These 
elements may be directly identifiable as single 
units, or identifiable indirectly as distinct 
members of larger units. The (12) measurable 
characteristics (variate values) of unit ui are 
(xi, yi, zi...), and for the purpose of 

* 
This idea was used by Boscovich as early as 

1757 in fitting a line by his method of mini- 
mizing the sum of the absolute deviations [2]. 

I must thank Dr. Churchill Eisenhart for the 
gift of his paper on the work of 
Roger Joseph Boscovich. 



this paper we assume that they can be measured 
without error. 

A de facto functional relationship exists 
between the conjoint values of the respective 
characteristics of each element ui as soon as the 

corresponding sets of finite values are defined 
as ordered t- tuples, and the whole (finite) 
collection of such t- tuples 

(1) {(yi.xi,zi,...): 

defines this functional relationship completely 
in a mathematical sense. The way of expressing 
the functional relationship at (1) may be in- 
terpreted to mean that the first coordinate y, 
in some sense, depends on the remaining -1 
corrdinates (x,z,...); this formulation is 
sufficient to initiate the next statement of the 
problem and also to suggest the possibility of 
casual relationships in the context of problems 
in the real world. 

Obviously such a function is discontinuous, 
but the theoretical possibility that it can be 
satisfactorily approximated by some continuous 
(real) function remains open. 

Generally such a (hypothetical) function 
approximating the de facto function, and pur- 

porting to show the relationship between the 
variate values of the elements of the universe 
may be expressed as a multivariate polynomial 
(of some prescribed degree with para- 
meters, 

P- 
but less than the number 

of observations, viz, 

(2) 

where the domains of the R -1 arguments, X,Z,..., 
whatever they may be, are such that each includes 
the respective domains of x,z,... . The -1 

domains of x,z,... are defined by the extreme 
values relevant to each marginal distribution. 
The domain of Y will be determined by + f. 
We stress here that since the (Y, X, Z, ?..)'s 
are not in one -to -one correspondence with any 
probability measure, they are ordinary variables 
despite the fact that their domains cover the 
domains of (y,x,z,...) which later are found to 
be strictly random variables. The form of the 
polynomial relationship between Y and X,Z,... 
may be suggested by previous information and /or 
that of the sample drawn for its estimation. 
The reader may now see that any of the 
variables may be chosen as the dependent 
variable so that in general different formula- 
tions similar to (2) are possible. The user of 
the theory will have to decide which of the 
formulations is revelant in the context of his 
problem. It may very well be that more than one 
formulation is revelant. Obviously the question 
of relevance, in problems of specific applica- 
tions of the theory, is something outside the 
scope of a general mathematical -statistical 
theory. What, in sequel, will appear important 
for the development of the theory is that f 
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is linear in the -1 unknown parameters. 

To estimate the parameters of the function- 
al relationship (2) we have a sample of distinct 
units, s, from U which is realized with positive 
probability p(s). To elaborate further, s is a 
member of a collection S, i.e. S {s }, and p(s), 
a rational positive number less than unity, is 
defined for all s. For the sake of generality 
the sample design leading to s (with all its 
appropriate randomization procedures for the 
selection of units) is not specifically defined. 
It may be simple random sample or it may be a 
multi -stage sample where units at one or more 
stages are drawn with varying probabilities, with 
or without replacement. What we have are the 
variate values of the distinct units of s and its 
corresponding probability of realization, viz. 

(3) {(yi,xi,zi,...): ies} and p(s). 

We conclude from the statement at (3) and the 
preceding explanations of this paragraph that 
y, x, z,... are all random variables. 

It is important to note that p(s) (unlike, 
for example, the multivariate normal probability 
for correlated variates) cannot tell us anything 
about the nature of the relationship between the 
random variables y, x, z, etc., simply because it 
is a numerical value. However, it is through 
p(s) that the values of the random variables 
incident to the distinct units of s are revealed, 
and which in turn suggest the form of the 
(approximate) functional relationship. Logically 
therefore we cannot ignore p(s), or equivalently 
the sample design, when we attempt to infer about 
(1). 

Now (2), as it stands, is just a hypothet- 
ical relationship between the variables, as 
yet unrelated to the N discrete points 

(4) (yi,xi,zi,...), (i =1,2,...,N) 

in the same 9.-dimensional Euclidean space, which 
define the de facto functional relationship (1). 

The statistical data given at (3) in some sense 
represents (4). To arrive at a statistically 
meaningful functional relationship a conjunction 
of (3) and (2) needs to be effected in some way. 

Heuristically we feel that some condensation 
of the data at (3) is required as a first step to 
effect conjunction with (2). It is natural to 
think of the centroid of these points for the 
purpose of condensation. 

Apart from the problem of functional 
relationships, it is desirable from the point of 
a view of the known estimation theory for sample 
surveys, to have the true centroid of (4) and the 

centroid of (3), which will be an estimate of the 

true centroid, as close as possible in some 
sense. 

The true centroid is given by 



(5) (y, x, z,...) 

where 

E 

i=1 
N 

x E xi/N, 

N 
z E etc. 

i-1 

On the basis of the data at (3) let 

(7) (Y, x, z,....) 

be estimate of (5). The estimating formulas for 

y, x, z, etc. will depend on the underlying 
sample design. We shall require these estimates 
to be admissible and consistent, and more 
desirably to be unbiased. Because there are no 
best estimates in the context of sample surveys 
(see [4] and [7]) this is all we can do to 
ensure that (7) shall be "close" to (5). 

To effect conjunction let the polynomial 
(hypersurface) (2) pass through the point (7), 

which is composed of estimates (based on data 
(3)) which are also random variables. Then we 
have 

(8) Y- y+f(X,Z,.. 
1)- 

;ß1,.,ßp -1) 

as the equation of the hypersurface passing 

through (7). Hence Y is a function of random 
variables or a random function for short. It is 

important to note that f (X,Z,...;ß1 
-1) 

in 

(8) is just a real function without probabilis- 
tic character since X,Z,... are not defined as 
random variables. 

Because Y is a random function there is no 
way to apply the classical method of least 
squares for the estimation of 

p 

However, one of the twin principles on which 
least squares is founded, the Laplace -Gauss 
principle of minimum variance, is applicable in 

the sense that it allows us to determine the 
form of the ß's which minimize the variance of 
the random function (8). We proceed to apply 
this principle. We have 

(9) V(Y)- -2 Cov 

In determining V(Y), f(X,Z,...) behaves as a 
constant by virtue of the fact that X, Z, etc., 

are not defined as random variables. Equation 
(9) reveals the interesting result that the 

variance of Y is constant for all (X, Z,...). 

We note that f is a polynomial linear in 

the ß's and also that the ß's are implicit in 
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V[f] and Cov [y, f], and both these functions 
which are respectively of degree two and degree 
one in the ß's, involve the variances of 

x, z, etc., and also the relevant covariances. 

The value of the ß's which minimize V(Y) will 
be given by the solution of the following p -1 
equations 

(10) 
a f] 

= 

(a - 1, 2,...p -1). 

It is not difficult to see that the solution 
of the set of p -1 simultaneous equations given 

at (10) minimizes V(Y). From 
covariance function is linear 

f 
Hessian 

aßaaßb aßaaßb ' 

(9), since the 
in the ß's, the 

(a =b- 1,2,...,p -1) 

will obtained with variances of x, z, etc., 
making up the diagonal elements and the 
corresponding covariance expressions making up 
the off -diagonal elements. This Hessian and all 

its principal minors, starting with , 

are all positive so that V(Y) is minimized. 

The simultaneous equations (10) involve 
(unknown) universe values of the variances and 
the covariances. Hence the solution for each ß 

will be a ratio of functions of variances and 
covariances. For the sake of argument, if these 
variances and covariances were known, the ß's 
obtained by solving (10) would really minimize 

V(Y). But this cannot be realized. What can be 
done, as proposed in the foregoing account, is 
to substitute the unbiased or consistent 
estimates in the formal solution for each ßa. 

The expressions for the estimated ß's will 
be in the form of ratios, the respective numera- 
tors and denominators of which involve estimates 

of the variances and covariances. If is an 

estimate of then because it is a ratio 

estimate 

E(ßa) (a = 1, 2,..., p -1), 

so that it is a biased estimate. We shall recur 
briefly to this problem in section 3. At any 
rate these estimated ß's, despite their bias, 
are in some sense near -minimum values, since the 
values implied by their parent expressions are 
minimum values. 

In summary, and ascribed functional 
relationship is estimated in the following steps: 

(i) estimate the centroid of the universe, 
(ii) determine the random function, i.e., 

the equation of the given surface 



(or line) passing through this for the ith element (i= 1,2,...,nh) of the hth 
estimated centroid, 

(iii) determine the variance of this random 
stratum. We wish to estimate a linear functional 

function, 
relationship 

(iv) determine the parameters involved so 
as to minimize the variance of the 

(12) Y = + ß1X. 

random function, and 
(v) estimate these parameters by sub- 

We proceed as indicated in the summary paragraph 

stituting in their expressions unbias- of section 2. The centroid (y, x) is given by 
ed or consistent estimates for the 

-3-r:= 

L Nh L 
Eu and covariances involved, or (13) E E y / E N 

functions thereof. h =1 i =1 h =1 h 
L Nh L 

With these estimates of the parameters and the y = E E Nh 
centroid, an estimate of the functional relation- h =1 i =1 h =1 
ship is 

The unbiased estimates of y and x are 
(11) Y'= y+ f( X ,Z,..;81, 1)- f(x,z,..;ß1'" 

L W 

(14)(y E 

E 
yh 

h =1 
The expression for the variance of Y' will be 
extremely complex. Because of this circum- 
stance the estimation of the variance of Y' for 

given (X, Z,...) for any specified sample design 
and functional relationship, will be difficult. 
A way of circumventing this difficulty through 
the well known technique of independent repli- 
cated samples, initiated by the late 
Professor Mahalanobis in the thirties in India, 
is discussed in section 3. 

3, Example for Stratified Random Sampling 

In this section we shall consider the 
estimation of a linear functional relationship 
for the case of stratified random sampling. 
Examples for more ramified sample designs are 
available but have not been included here to 
save space. 

For the case of linear relationship with 
simple random sampling a brief discussion of 

(i) the bias of the estimated parameter, 
(ii) the estimation of the variance of a 

Y- value, for given X, through the 
technique of independent replication, 
and 

(iii) a type of probability statement re- 
garding the median Y -value for a 
given X 

will be given. This discussion is intended to 

suggest solutions for similar problems incident and 
to functional relationships considered with L 2 

- 
1 

sample designs other than simple random sampling. (19) V(x) = 
h 

x= 
h=1 i=1 

L 

where = Nh / Nh (h=1, 2,...L). Thus the 

h=1 

equation of the line passing through the 

estimated centroid (y, x) will be 

(15) = y+ 01 (X - x). 

By virtue of (y, x), (15) is a random function, 
with variance 

(16) V(Y) = V(y) + v(x) - 281 Cov (y, x). 

The value of which minimizes V(Y) is given 

by the solution of the equation /a = 0, 

that is 

(17) 01 = Cov (y, x)/ V(x). 

This is the minimum value, since 2v(x)>0. 

aß1 

Now according to standard theory 
L 

(18) Cov = 

The universe U is subdivided into L strata 
each containing Nh elements (h =1,2,...,L). From 

stratum h, nh (h =1,2,...;L) elements are 

selected with equal probabilities and without 
replacement at each draw, and two measurable 
characteristics are observed. Let 

denote the variate values of the characteristics 
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where 
N 

(20) Shxy (xhi - yh) - 1) 

and 
N 

(21) (xhi - /(Nh - 1) 



in which and are the usual stratum means. 

As increases, the variances of the estimates 

given by (14) decrease. In this connection the 
reader might say "what happens to if = 

Nh for all h ?" Mathematically, of course, we 

have a situation when as expressed in terms 

of values given by (18) and (19) assumes an 

indeterminate value Ó. But here logic, the 

premises for which are already embedded in the 
basis of the problem comes to the rescue. The 
reply is that the need for estimating the 
hypothesized relationship along the lines stated 
in the paper, would vanish, simply because 
complete knowledge of the functional relation- 
ship is already given by the de facto relation- 
ship (1), applicable to the case of two 
variables. The same kind of argument holds if 

= Nh for some strata. The need for determin- 

ing a functional relationship would then be 

restricted to the remaining strata. 

An estimate of is is obtained by sub - 

stiteting unbiased estimates of Cov (y, x) and 

V(x) in (17) and their estimation entails un- 

biased estimates of Shxy and For a given 

h, these estimates are 

(22) Shxy (xhi - 1) 

and 

(23) x)2/(nh - 1), 

where and h are the usual unbiased estimates 
of Xh and 

Thus an estimate of the linear relationship 
will be 

(24) Y' = y+ (X - x). 

where 

(25) - h) h 

(1 - ) 
The formula (25) speaks for itself. We inter- 

pret the multiplying factor in both 

numerator and denominator as expressing the 
importance of the strata involved. 

When there is proportional allocation, i.e. 

/E = Wh for all h, then 
1 
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L 
Wh 

(26) 
L 
E Wh 

a result independent of sample size. Further 
when W1 = 1, and Wh = 0 for h = 2,...L, i.e. 

there is only one stratum, then, dropping the 
stratum identification subscript, we find 

(27) = E (x.-)(y-) / E 
(xi 

- x)2, 
i i =1 

which is a familiar estimate obtained in the 
least squares method. The identity of this 
result with that of classical least squares 
regression is certainly reassuring. 

By the use of the generalized k- statistics 
[1] it can be shown that 

- 
K31 

(28) 
2 

K20K11 

(N- n)(Nn- n -N -1) + 
n(n- 1)N(N+1) 

N N 
where 

E 
(xi - x) (yi - y) / 

E 
(xi - x) 2 may 

be defined as the true regression coefficient 
and K40' 

K31' K20' 
and K11 are parent bivariate 

k- statistics for a finite universe. Thus the 

bias of relative to the 

1 /n. The proof is omitted 

Similar results hold for 

complicated by the weights, 
sampling fractions involved 

true is of order 

to save space. 

and but are 

and additionally the 
in the case of 

The variance of Y', for any given X, is 

(29) V(Y') = V(y) +X2 V(ß1) +V(0 1 x) -2X Cov(ßl, x) 

- 2 Cov x, y) +2X Cov (y, ) 

Other than the expression for V(y), which is 
similar to (19), the expressions for the 
remaining terms will be extremely complex and 
will not be exact when determined by series 
expansion methods. Thus, estimation of V(Y') 
for a given X poses a problem. 

The difficulty of variance estimation can be 
circumvented by the technique of independent 
replication. Suppose the universe was not 
stratified and suppose we draw k independent 
replicated simple random samples (see [11] and 
[8]), each of the same size, and estimate k 
statistically independent lines 

(30) = ya + 81a (X - xa) (a 1,2,...,k) 

according to the foregoing theory. The addition- 
al subscript in (30) identifies the k different 



lines. Then an estimate of the Y- ordinate, for 
a given X, is simply 

k 
(31) R' = 

k 
E Y' 

a =1 

with variance 

(32) V(V') /k 

an unbiased estimate of which is 
k 

(33) v(y') E (Y'' - ')2/ {k(k -1) }, 
a =1 

despite the complexity of the expression for 
V(Y'). 

The method of independent replication also 
leads to a method for making probability state- 
ments about the median. If the sample size for 
each independent replicate is n, then we can 

N 
have n possible estimated lines. For a given 

, the -ordinate will cut these lines in 
N 
n) points, assuming that the slope of every 
estimated line is at angle other than 90". If 

is an even number we may define the median Y 

(N) th 
as the point midway between the } Y- 

N 

value and the { 2)+ 1 }th Y- value. Recalling the 

results of classical nonparametric theory or 
arguing from first principles, we find with 
independent replicates, for a given X, that 

least median largest 2 

Order statistics other than the extremes may 
also be used in making probability statements. 

The reasons for restricting a statement of 
probability to the median of the Y's are as 
follows: 

(A) The de facto functional relationship 
is restricted only to the N discrete 
points so that the given X 
(corresponding to which inference 
about Y is desired) may not relate to 

any of the true X's. 
(B) Nonetheless on the supposition that 

X may be a possible value we wish to 
know the probability limits of the 
corresponding Y- value. For given 
X, the only probability distribution 
of the Y- values is those of the 
corresponding Y- ordinates of the 

(N) 
lines generated by the random - 

nation procedure for selecting the 

A) 
possible samples. The statment of 

probability, of necessity, must there- 
fore be restricted to this set of Y- 
values (for given X), and the only 
exact statement of probability we can 
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make is about the median Y -value of this 
distribution. 
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